IMBDX

Our Solution

Early detection of cancer.

Publications

게시물 목록
NO YEAR SUBJECT JOURNAL NAME LINK
17 2023

Mutational evolution after chemotherapy-progression in metastatic colorectal cancer revealed by circulating tumor DNA analysis

Abstract Emerging new mutations after treatment can provide clues to acquired resistant mechanisms. Circulating tumor DNA (ctDNA) sequencing has enabled noninvasive repeated tumor mutational profiling. We aimed to investigate newly emerging mutations in ctDNA after disease progression in metastatic colorectal cancer (mCRC). Blood samples were prospectively collected fr|om mCRC patients receiving palliative chemotherapy before treatment and at radiological evaluations. ctDNA fr|om pretreatment and progressive disease (PD) samples were sequenced with a next-generation sequencing panel targeting 106 genes. A total of 712 samples fr|om 326 patients were analyzed, and 381 pretreatment and PD pairs (163 first-line, 85 second-line and 133 later-line [≥third-line]) were compared. New mutations in PD samples (mean 2.75 mutations/sample) were observed in 49.6% (189/381) of treatments. ctDNA samples fr|om later-line had more baseline mutations (P = .002) and were more likely to have new PD mutations (adjusted odds ratio [OR] 2.27, 95% confidence interval [CI]: 1.40-3.69) compared to first-line. RAS/BRAF wild-type tumors were more likely to develop PD mutations (adjusted OR 1.87, 95% CI: 1.22-2.87), independent of cetuximab treatment. The majority of new PD mutations (68.5%) were minor clones, suggesting an increasing clonal heterogeneity after treatment. Pathways involved by PD mutations differed by the treatment received: MAPK cascade (Gene Ontology [GO]: 0000165) in cetuximab and regulation of kinase activity (GO: 0043549) in regorafenib. The number of mutations revealed by ctDNA sequencing increased during disease progression in mCRC. Clonal heterogeneity increased after chemotherapy progression, and pathways involved were affected by chemotherapy regimens.

International Journal of Cancer

LINK _VIEW

16 2023 Experimental & Molecular Medicine

LINK _VIEW

15 2023

Personalised circulating tumour DNA assay with large-scale mutation coverage for sensitive minimal residual disease detection in colorectal cancer

Abstract Background Postoperative minimal residual disease (MRD) detection using circulating-tumour DNA (ctDNA) requires a highly sensitive analysis platform. We have developed a tumour-informed, hybrid-capture ctDNA sequencing MRD assay. Methods Personalised target-capture panels for ctDNA detection were designed using individual variants identified in tumour whole-exome sequencing of each patient. MRD status was determined using ultra-high-depth sequencing data of plasma cell-free DNA. The MRD positivity and its association with clinical outcome were analysed in Stage II or III colorectal cancer (CRC). Results In 98 CRC patients, personalised panels for ctDNA sequencing were built fr|om tumour data, including a median of 185 variants per patient. In silico simulation showed that increasing the number of target variants increases MRD detection sensitivity in low fractions (<0.01%). At postoperative 3-week, 21.4% of patients were positive for MRD by ctDNA. Postoperative positive MRD was strongly associated with poor disease-free survival (DFS) (adjusted hazard ratio 8.40, 95% confidence interval 3.49–20.2). Patients with a negative conversion of MRD after adjuvant therapy showed significantly better DFS (P < 0.001). Conclusion Tumour-informed, hybrid-capture-based ctDNA assay monitoring a large number of patient-specific mutations is a sensitive strategy for MRD detection to predict recurrence in CRC.

British Journal of Cancer

LINK _VIEW

14 2023 Cancers

LINK _VIEW

13 2023

Circulating Tumor DNA Dynamics and Treatment Outcome of Regorafenib in Metastatic Colorectal Cancer

ABSTRACT   Purpose Circulating tumor DNA (ctDNA) is emerging as a valuable non-invasive tool to identify tumor heterogeneity and tumor burden. This study investigated ctDNA dynamics in metastatic colorectal cancer patients treated with regorafenib.   Materials and Methods In this prospective biomarker study, plasma cell-free DNA (cfDNA) samples obtained at baseline, at the first response evaluation after 2 cycles of treatment,  and at the time of progressive disease (PD) were sequenced using a targeted next-generation sequencing platform which included 106 genes.   Results A total of 285 blood samples fr|om 110 patients were analyzed.  Higher baseline cfDNA concentration was associated with worse progression-free survival (PFS) and overall survival (OS).  After 2 cycles of treatment, variant allele frequency (VAF) in the majority of ctDNA mutations decreased with a mean relative change of -31.6%.  Decreases in the VAF of TP53, APC, TCF7L2, and ROS1 after 2 cycles of regorafenib were associated with longer PFS. We used the sum of VAF at each time point as a surrogate for the overall ctDNA burden.  A reduction in sum (VAF) of ≥ 50% after 2 cycles was associated with longer PFS (6.1 vs. 2.7 months, p=0.002), OS (11.3 vs. 5.9 months, p=0.001), and higher disease control rate (86.3% vs. 51.1%, p<0.001).  VAF of the majority of the ctDNA mutations increased at the time of disease progression, and VAF of BRAF increased markedly.   Conclusion Reduction in ctDNA burden as estimated by sum (VAF) could be used to predict treatment outcome of regorafenib.  

Cancer Research and Treatment

LINK _VIEW